STUDIES RELATING TO THE THERMAL

RESPONSE OF AZABICYCLONONATRIENES1,2

A. G. Anastassiou, R. L. Elliott³ and A. Lichtenfeld

Department of Chemistry Syracuse University Syracuse, New York 13210

(Received in USA 20 August 1972; received in UK for publication 2 October 1972)

RECENTLY we described the preparation of parent 9-azabicyclo[6.1.0]nona-2,4,6-triene(1)* a potentially ideal progenitor to a host of N-substituted variants of the series. Presently we detail information relating to the thermolytic response of one such derivative, 2 [mp. 55.5-56.5°; v_{CO} (KBr) 1725 cm.⁻¹, λ_{max} (95% EtOH) 240 nm (ϵ 3600); nmr (60 MHz; C_eD_e) τ 3.82-4.32 (6H, m), 6.53 (3H, s), 7.08 (2H, s)]. Thermolysis of 2 in benzene solution at 56° occurs with a half-life (t_2) of <u>ca</u>. 73 min., and supplies 3^5 [v_{co} (neat) 1710 cm.⁻¹, λ_{max} (C₆H₁₄) 228 nm (ϵ 15,500); nmr (60 MHz; C₆D₆) τ 3.03 (2H, d, J = 9.5 Hz), 4.00 (2H, s), 5.10 (2H, d, J = 9.5 Hz), 6.42 (2H, nm), 6.60 (3H, s)] in essentially quantitative yield⁶. When exposed to the same temperature, pure 3 rapidly generates a two-component equilibrium mixture of 25% 3 and (5% 2 (nmr) which on heating to 76° undergoes slow (t r 17 hr.) but irreversible isomerization to yield, after ca. 40 hr., a thermolysate consisting of' 54% 4 [ν_{CO} (neat) 1720 cm.⁻¹, λ_{max} (95% EtOH) 226 nm (ϵ 11,000), 337 (5500); nmr (60 MHz; $C_{e}D_{e3}$ 75°) τ 3.00 (1H, d, J= 4.0 Hz, H_{d}), 3.7-4.1 (1H, m), 4.2 4.6 (3H, m), 5.71 (1H, dd, J = 20.0, 8.5 Hz, H_a), 6.52 (3H, s), 6.7-7.3 (1H, m, J = 17.0, 8.5, 6.0 Hz, $H_{\rm b}$), 7.95 (1H, dd, J = 20.0, 17.0 Hz, $H_{\rm c}$)]^{*}, 27% 5 [spectrally (nmr, uv, ir) analogous to the N-carbethoxyl counterpart]*, 11% $\frac{6}{2}$ [v_{CO} (neat) 1720 cm.⁻¹, λ_{max} (C₆H₁₂) 279 nm (ϵ 5700); nmr (100 MHz; C₆D₆) τ 3.43 (1H, d, J = 8.5 Hz, H₁), 3.86 (1H, dd, J = 2.7, 1.0, H₂ or H₆), 4.3-4.5 (4H, m), 4.8-5.0 (1H, m, J = 8.5, 5.5 Hz, H₂), 6.52 (1H, t, J = 5.5 Hz, H₇), 6.60 (3H, s)] and 8% $\gamma [v_{CO} (\text{neat}) 1745 \text{ cm} \cdot ^{-1}, \lambda_{\text{max}} (C_{6}H_{12}) 225 \text{ nm}$

 $(\varepsilon 22,500)$, 253 (11,000), 260 (10,500); nmr (60 MHz; C_6D_6) τ 1.55 (1H, m), 2.5-2.9 (4H, m), 3.67 (1H, d, J = 4.0 Hz), 6.60 (3H, s)]. Moreover, compounds 5 and 6 were shown (uv monitor) <u>not</u> to rearrange to 4 on heating at 76° for as long as 60 hr.

By contrast, workup' of a thermolysate generated from only partial thermal consumption of 3, in benzene, at 76° (<u>da</u>. 8 hr., (50% reaction) yielded' $\frac{8}{2} [v_{CO} (\text{neat}) 1715 \text{ cm.}^{-1}; \text{ nmr} (60 \text{ MHz}; C_6D_6) \tau 3.30 (1H, dd, J = 4.5, 3.0 \text{ Hz}),$ $3.7-4.5 (4H, m), 5.06 (1H, dd, J = 4.5, 2.0 \text{ Hz}), 6.08 (1H, d, J_{ab} = 23.5 \text{ Hz}),$ $6.60 (3H, s), 6.80 (1H, d, J_{ab} = 23.5 \text{ Hz})]$ as the major () 50%) product. Not unexpectedly, 8 was found to readily yield 7 (nmr) on exposure to air and 4 (nmr, uv) on heating at 76° ($t_{\frac{1}{2}}$ 3.5 hr.)^{1°} The present results thus <u>effec</u>tively establish 8 as a major product in the thermolysis of 3 at 76°.

From a mechanistic viewpoint, the information recorded herein is best interpretable when contrasted to the thermal response of the N-acetyl analog of $3 \cdot 1$ Thus, bearing in mind that the acetamide is substantially more heat sensitive $[t_{\frac{1}{2}}(76^{\circ}) - 80 \text{ min.}]$ than 3 and that its thermolysis at 76° leads exclusively to the N-acetyl counterparts of 5 and 6 we find it tempting to ascribe the formation of 8 in the present instance chiefly to "leakage" from 2 triggered as an effective mechanistic competitor by the relatively sluggish $(t_{\frac{5}{2}} - 17 \text{ hr.})$ response of 3 at 76°. Adhering to this line of reasoning we might further suggest that isomers 5 and 6 are largely derived from 3.

Finally, we stress that in light of the present information one might well question the accuracy of a recent claim by Masamune and Darby¹¹ to the effect that the carbethoxyl analog of 3 thermolyzes to a <u>cis</u>-fused 8,9-dihydroindole. In fact, preliminary work within our laboratories appears to confirm our suspicions in this connection insofar as the urethane counterpart of $\frac{4}{2}$ is readily detectable (nmr) as a major component of a mixture generated on heating the carbethoxyl analog of 3 at 76°.

We are actively pursuing work with this intriguing family of bicyclics. <u>Acknowledgment</u>: We are grateful to the National Science Foundation (GP 26347) and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work.

REFERENCES AND REMARKS

- (1) Preceeding paper in the series: A. G. Anastassiou and R. L. Elliott, <u>Chem. Commun.</u>, in press²
- (2) Presented at the "Fourth Northeast Regional Meeting" Hartford, Conn., October 17, 1972
- (3) NDEA Graduate Fellow 1971-74
- (4) A. G. Anastassiou, S. W. Eachus, R. L. Elliott and E. Yakali, <u>Chem.</u> <u>Commun.</u>, 531 (1972)
- (5) An analogous thermal conversion was reported earlier for the carbethoxyl counterparts: S. Masamune and N. T. Castellucci, <u>Angew. Chem.</u>, <u>76</u>, 569 (1964)
- (6) While 3 is by far the major thermolysis product of 2, purification of the thermolysate by column chromatography at ca. -15, invariably leads to the isolation of minor quantities (ca. 10%) of N-carbomethoxy-trans-8,9-dihydroindole (8) (see text for characterization)
- (7) The mixture was separated into its individual components by chromatography on alumina at <u>ca</u>. -15° . The percentages given were calculated from the weights of the various fractions and are thus necessarily approximate.
- (8) Two particularly revealing spectral features of $\frac{4}{4}$ are (1) the magnitude of J_{ac} (20 Hz) and (11) the presence of a relatively low energy uv band (337 nm) both of which are accomodated by the Dreiding model of $\frac{4}{4}$ which requires that H_a and H_c possess a <u>trans</u> coplanar disposition and that the " π " frame of the molecule be essentially flat.
- (9) A. G. Anastassiou and J. H. Gebrian, <u>Tetrahedron Letters</u>, 5239 (1969)

- (10) For similar transformations among hydrocarbons see: S. W. Staley and T. J. Henry, J. Amer. Chem. Soc., 91, 1239, 7737 (1969); A. G. Anastassiou and R. C. Griffith, Chem. Commun., 399 (1972)
- (11) S. Masamune and N. Darby, Accts. Chem. Res; 5 272 (1972)